• Home
  • /
  • Meldungen
  • /
  • BaFin zu Big Data und künstlicher Intelligenz (BDAI)

17.06.2021

BaFin zu Big Data und künstlicher Intelligenz (BDAI)

Beitrag mit Bild

©Alexander Limbach/fotolia.com

Die BaFin hat aufsichtliche Prinzipien für den Einsatz von Algorithmen in Entscheidungsprozessen von Finanzunternehmen publiziert. Sie sollen zu einem verantwortungsvollen Einsatz von Big Data und künstlicher Intelligenz (Big Data und Artificial Intelligence – BDAI) führen und die Kontrolle des damit einhergehenden Risikos ermöglichen.

Technologien wie BDAI werden zunehmend auch von Unternehmen des Finanzmarkts angewendet. Bereits 2018 hatte die BaFin in ihrer Studie „Big Data trifft auf künstliche Intelligenz “ darauf hingewiesen, dass sich daraus Chancen für die Unternehmen, aber auch für Verbraucherinnen und Verbraucher ergeben, dass es aber auch gelte, die Risiken zu beherrschen, die BDAI-Anwendungen mit sich brächten.

Grundsätze für kontrollierten Einsatz von BDAI

Ausgehend von den Erkenntnissen der Studie und den Ergebnissen einer anschließenden Konsultation hat sich die BaFin unter anderem mit der Frage befasst, welche aufsichtlichen Grundsätze und Rahmenbedingungen für einen kontrollierten Einsatz von BDAI aufgestellt werden müssen. Ergebnis dieser Überlegungen ist nun das Prinzipienpapier, das den von der BaFin beaufsichtigten Unternehmen als Orientierungshilfe dienen soll. Außerdem erhofft sich die BaFin von dem Papier wichtige Impulse für den Austausch mit verschiedenen Stakeholdern.

Schwierige Abgrenzungsfragen

Dabei liegt allen regulatorischen Fragen rund um BDAI ein grundsätzliches Problem zugrunde: Nach wie vor ist es schwierig, BDAI-Verfahren von Verfahren der klassischen Statistik abzugrenzen. Unter Risikogesichtspunkten lassen sich aber drei Merkmale herausstellen, die bei modernen BDAI-Methoden von besonderer Bedeutung sind:

  • Erstens sind die verwendeten Algorithmen häufig im Vergleich zu klassischen statistischen Verfahren besonders komplex. Das erschwert ihre Nachvollziehbarkeit.
  • Zweitens lassen sich immer kürzere Rekalibrierungszyklen beobachten. Dies liegt an der Kombination aus stetig weiter lernenden Algorithmen und daran, dass nahezu täglich neue Daten zur Verfügung stehen. Dadurch verschwimmen immer mehr die Grenzen zwischen Kalibrierung und Validierung.
  • Drittens erhöht sich durch den Einsatz von BDAI-Methoden der Grad der Automatisierung. Dadurch lassen sich Prozesse immer leichter hochskalieren, und die Auswirkung des einzelnen Algorithmus nimmt zu.

Die Prinzipien gelten daher vor allem für solche Algorithmen, die diese drei Merkmale aufweisen.

Aufteilung in zwei Phasen

Um die Prinzipien möglichst genau formulieren zu können, wurde der auf Algorithmen fußende Entscheidungsprozess stark vereinfachend in zwei Phasen unterteilt: die Entwicklungsphase und die Anwendungsphase. In der Entwicklungsphase geht es darum, wie der Algorithmus ausgewählt, kalibriert und validiert wird. Hierfür gibt es beispielsweise Prinzipien zur Datenstrategie, aber auch solche zur Dokumentation der unternehmensinternen und externen Nachvollziehbarkeit. In der Anwendungsphase müssen die Ergebnisse des Algorithmus interpretiert und in Entscheidungsprozesse eingebunden werden. Dies kann automatisch geschehen, aber auch, indem laufend Experten einbezogen werden. In jedem Fall muss eine funktionierende Geschäftsordnung etabliert sein, die unter anderem ausreichende Kontrollmechanismen und entsprechende Feedbackloops zur Entwicklungsphase umfasst. Flankiert werden diese beiden Phasen durch übergeordnete Prinzipien, etwa zur Notwendigkeit einer klaren Verantwortungsstruktur und eines adäquaten Risiko- und Auslagerungsmanagements.

(BaFin vom 15.06.2021 / Viola C. Didier, RES JURA Redaktionsbüro)

Unsere Empfehlung für tiefergehende Recherchen zum Thema Wirtschaftsrecht:
Owlit-Modul „Bank- und Kapitalmarktrecht (Erich Schmidt)“


Redaktion

Weitere Meldungen


Meldung

©ty/fotolia.com

17.09.2025

Volkswirtschaftliche Bedeutung von KMU bleibt trotz Krisen hoch

Trotz der vielen geopolitischen Herausforderungen erwirtschafteten die kleinen und mittleren Unternehmen (KMU) 2,8 Billionen Euro im Jahr 2023 laut den aktuellsten verfügbaren Daten. Das waren 28 % des gesamten Umsatzes in Deutschland. Obwohl der absolute Umsatz der KMU im Vergleich zu 2022 gestiegen war, sank dennoch ihr Anteil am Gesamtumsatz, weil die Großunternehmen ihren Umsatz

Volkswirtschaftliche Bedeutung von KMU bleibt trotz Krisen hoch
Meldung

© Minerva Studio/fotolia.com

17.09.2025

ZEW-Index: Lage verschlechtert sich weiter

Nach dem jüngsten Einbruch im August 2025 stabilisieren sich die Erwartungen im September. Sie liegen mit plus 37,3 Punkten um plus 2,6 Punkte über dem Vormonatswert. Die Einschätzung der aktuellen konjunkturellen Lage sinkt dagegen weiter. Der Lageindikator für Deutschland liegt mit minus 76,4 Punkten um minus 7,8 Punkte unter dem Vormonatswert. „Die Finanzmarktexpertinnen und -experten

ZEW-Index: Lage verschlechtert sich weiter
Meldung

©peshkova/123rf.com

16.09.2025

Jedes dritte Unternehmen nutzt KI

Künstliche Intelligenz ist in den vergangenen Monaten in der Breite der deutschen Wirtschaft angekommen. Inzwischen nutzt etwa jedes dritte Unternehmen (36 %) KI. Damit ist der Anteil fast doppelt so hoch wie noch vor einem Jahr, als er 20 % betrug. Zudem plant oder diskutiert fast jedes zweite Unternehmen (47 %) aktuell den KI-Einsatz, das sind ebenfalls deutlich

Jedes dritte Unternehmen nutzt KI

Haben wir Ihr Interesse für CORPORATE FINANCE geweckt?

Sichern Sie sich das CORPORATE FINANCE Gratis Paket: 1 Heft + Datenbank